Things have not been quiet since the last release. In the development version, more languages have been added (German and Slovenian), thanks to several volunteers. Thank you! Also, a new release makes users go through a lot of screens and quite a few bugs have already been found. And fixed. We try not to do hotfixes, unless (like with this last release) CanZE really crashes. So, the more benign bugs are fixed or being fixed in the development branch.

As always, feel free to report issues on the github issue tracker, where you can also see what other reported and what has already been closed.

We also got some feedback on the new “Clima” screen. Notably, there was a request to also show the power the climate system takes. This has not been proven possible (maybe “not yet”, see below), so after some experimentation, we added the compressor RPM as a separate graph to the climate screen. Here’s a teaser (pardon the Dutch).

Finally, we are very happy to have been able to crowd-fund the acquisition of a CLIP system (yes, a clone). Many users made a contribution to make this possible. Thank you! We really hope we can dissect the BCB (the charger) with it, as it is unwilling to give us it’s secrets just like the other computers do. Stuff has been ordered and we can’t wait to get our hands on it. We’ll most certainly report back here when it’s arrived, and later if it was able to give us what we want! Stay tuned.

We are close to releasing the next version, probably next weekend as we test for silly errors this week. Features:

  • Multi-language is now possible, and added languages (Dutch, French, and we think we’ll manage German too. Thank you all volunteers!)
  • Added a lot of diagnostics. This part still needs a lot of work. For some known ECU’s you now have:
    • Real descriptions of DTC’s, something like “Battery voltage:value below threshold”;
    • Dump of all diagnostic parameters to a file.
  • Added a Climate screen;
  • Changed the Firmware screen. This more expanded info is needed to import ECU definitions. More on that in a separate post later;
  • Lots of bug fixes in graphs and layouts.

Under the hood things have massively changed too.

  • Tons of cleanup, added comments and removal of old code;
  • Simplified and improved our development chain;
  • Improved and sped up existing code.

We’re still struggling with unstable Bluetooth and getting access to the BCB. We are working on both though.

Please note that this release of CanZE will ask for a new permission: Internet access. We use this only to have CanZE access a WiFi gateway (or a car emulator that uses the same protocol), see Developers geek talk . Regular users will probably never use this. Internet access is not used to send any data to the Internet. We have not implemented MQTT, we are not collecting any data, nothing.

When time is money (both re. your own time as well as how the operator calculates the rates), the following guidelines will help you, especially in winter. The’re all fairly obvious:

1. Try to avoid fast-charging starting at a high SOC to avoid entering the area where the car squeezes the charging power. This squeezing can start as low as 35% SOC when it is cold. Drive as far as possible to keep the charging power high for as long as possible.

2. Try to charge with the highest possible battery compartment temperatures. As driving increases the temperature substantially, try to fast-charge at the end of a drive, not i.e. the following morning. Fast charging itself also increases the temperature.

3. Quit fast charging as soon as you can. If there is a slow-charger at your destination, just fast charge until you can reach it.  This ensures fast-charging at the highest possible power and trades “real” waiting time (twisting thumbs) against “virtual” waiting time (car is charging for a longer time, but you’re not waiting for it doing nothing).

A rule of thumb is that squeezing from 43 kW starts at 30% SOC plus twice the battery compartment temperature for a Q210, and from 22 kW at 65% SOC plus the battery temperature for an R240. Note that this is for the 22 kWh battery. The 41 kWh battery behaves substantially different, but we don’t have enough data yet.