Somebody in the UK forum asked what would happen if you’d press the Start button while driving. Time for an experiment.

  • Pressing once: only thing happens is Cruise Control tripping off ;
  • Long press: nothing happens;
  • Five short presses: “ignition off”. Car starts coasting. No abrupt bleeding of speed. Brake servo remains primed, as is power steering.

To re-engage, let it coast for a few seconds, then short press again. It will do this even while the gear is in D!

One small software bug was detected while testing: the dashboard consumption / regeneration arc is gone and the “READY” label won’t go away until a “proper” cycle is done.

All testing was done done on the motorway, 100 km/h, 2013 Q210.

Disclaimer: don’t try this at home.

This time made by car mechanic of one of Bochane Almere, a ZE dealer here, through forum user “hachy”. Thanks for letting us use them!

Nice!
Reprogramming
Battery in situ. note the HV cable connected

 

Lifting the battery from the packaging

 

Careful now
Lift with positioning tool
Measuring leakage between chassis and the 400 volt bus at the HV fuses for the Climate compressor

 

Chimney closeup. Center is air in, others air out
Underside, battery removed

Edit: and lots more, with video, here.

 

See this post for the sometimes problematic cable locking mechanism.

Today my 2013 Q210 ZOE was at the dealer for it’s 4 year maintenance. I arrived there a tad low on battery so I asked them if they could please hook it up once they were done with it. No problem of course. Just as I arrived to collect it, I saw the chief mechanic getting in (it was already hooked up), so I walked up to him first. He was a tad nervous and said he had updated the charger firmware and now he noticed it wasn’t charging. I walked around only to hear the somewhat familiar cam wheel “whee whee” noise from the locker mechanism, so I joked: “well, luckily my friend, I do know what is wrong. Hooked the thing up again and all was dandy, though now of course I had to wait a bit to make it home.

Chatting along he told me the locking motor was now a new part number and maybe I wanted to replace it (80-ish euro). I decided to go for it. I have had a few early terminated charge sessions, and like the inner flap hinge, sometimes Renault does not always acknowledge a warranty issue, but they do improve the design over time. I’ll report back on this.

These picture Harm took for us “on request” and are all taken from under the car looking up with the cover screen and battery removed.

Battery cavity. Bottom of picture is front side of the car. Note the orange HV power cable, black control cable, shiny pipes running from the A/C to the battery evaporator, black brake lines and the cutout on the right side where the HV cutoff will go into the cabin.

 

Other end of “the cavity. Notice the extra space for “the chimney”, the three holes for cooling air (middle for air going into the battery, others for outflow), same A/C and brake pipes and the bowden cables for the hand brakes.

 

Same area but taken a bit front-to-back. Here you can see the very flat air ducts going from the top and over “the chimney” to the fan/evaporator unit behind it. The coolant pipes hop over the chimney too.

 

Front side of the battery, showing the HV receptacle and the control receptacle. The former is connected to the actual battery through a beefy relay, current sensor, 275 amp fuse and the HV disconnect. The latter basically contains just a 12 volt bus to run the LBC computer inside the battery and the Electro CANbus.

 

Underside of the motor peeking from the front side of the car. It can be divided in three parts. Left side is electrical inlet (you can just see the slip ring connector) and the modest water cooling in/outlet. Middle is the actual motor. Right side is the 9.8 reduction gear and differential. Top shows some A/C pipes. Bottom shows the axles to the front wheels.

 

Dutch ZOE driver and enthusiast Harm Otten was #3 in The Netherlands to have the battery of his Q210 upgraded to the ZE40 type. He was allowed to take pictures of the procedure done only yesterday and I want to thank him and the Arend Auto Eindhoven dealership for sharing them in public.

Battery as it arrived

 

Packaging opened. Note the HV disconnect plug that ends up under the foot well of the right front seat

 

Lifting out the battery using an engine lift. Note the “chimney”. More on that later.

 

Rolling it to the car on the lifting table

 

Lifting it in “the cavity”

 

Bolting it against the chassis with 8 bolts

 

New decoration 🙂

 

Done!

There are two ways to reset the trip part, which makes the car “forget” driving and battery behavior.

Reset “light” is through R-Link. This will reset the range indicator (GOM) to a value proportionally  related to the capacity of the battery. In effect it forgets how (un)economical you have driven. It was used in the old days to check how healthy the battery was.

There is also a harder reset, called the “two pedal reset”. Keep the driver door open, start the car, keep the gear in N, press and hold both pedals and press up key on the windshield wiper control until the averages message appears in the display. Now hold that button. First it displays the current values, then it starts flashing, then the average values display —. Now let go. This reset seems to also make the battery computer (LBC) loose quite a bit of acquired parameters and the GOM shoots up to a crazy value.

The car will rather quickly re-learn the state of affairs. Just don’t rely on the range indicator on your first trip after a reset.

This post is more for reference. In the R models there is no BCB and no PEB. These functions (power distribution, inverters, motor controller) are all integrated in one huge box called the PEC. Inside are several modules doing the hard work. Here are a few pictures of the PEC,the R240 motor, and the complete assembly.

PEC

 

R240 / R90 motor
R motor / PEC assembly

Zoe’s error messages to the driver are not always crystal clear. This one usually points to a failure in the 12 volt system.

There are basically two reasons why the 12 volt system can be compromised (barring real faults somewhere in the electrical system):

  1. failure of the 12 volt lead acid battery
  2. unexpected drain of the 12 volt battery (leading very very quickly to 1.)

Let me start by saying the 12 volt system feeds anything and everything that is not traction or the air conditioning compressor. For the non-Nordic version, it also feeds a few rheostats for fast wind shield defrosting. It’s all pretty beefy but still it can drain fast. Remember that all 16 computers are powered from the 12 volt system. If this bus runs bad, literally nothing will work as expected, if at all really.

Renault has the lead-acid battery replacement in their schedule set for after 3 years. This does seem pretty short indeed, but given the above, I wouldn’t dismiss the dealers suggestion for replacement flat out. If you are in doubt, at least have it tested. Lead acid batteries are loosing a notoriously amount of capacity when it gets cold, and you don’t want to get stranded with a full traction battery, but a dead 12 volt system. And if it’s dead, the computers are dead, and there will be no way to bootstrap charging it without hooking it up to an external 12 volt battery charger. Been there, read on.

Unexpected drain is pretty hard to do. The auxiliary power shuts off when the car goes in sleep mode, so even leaving on some sort of accessory through the lighter plug should shut down.

There is one scenario however, which I am pretty sure happened to me. The charger plug was not seated properly, or at least the car thought so. You can actually detect this when the motor lock retries every 2-3 seconds. This retrying continues forever and while this is going on, the car is fully awake, all computers are on, the lock motor is being fired continuously and of course no charging is happening while there is a serious load on the 12 volt system. Now one could think the 12 volt system is being replenished by the traction battery, but it isn’t. The lead acid battery was drained down to 5 volt in a few hours at which point the car went completely dead. 5 volt is devastating to a lead acid battery if not quickly charged. Luckily, I found out and diagnosed this within a few hours of it happening.

I couldn’t bootstrap the car “in situ”, because as soon as I connected my small 12 volt car charger to the battery, the car woke up, started to initialize all it’s systems and while doing so overwhelmed the charger. I removed the mass cable from the battery and charged it for an hour. After that, the battery had enough juice to pull the car through it’s initialisation. I then was able to remove the charger cable, hooked it up again and charged the car normally. The error went away after one cycle.