We got contacted by Scott Heim, reporting how well CanZE can be used with a Chromebook. Here is what he wrote on RZOC:

Haven’t heard talk about using a Chromebook with CanZE. As I’m a computer geek & experimented with a cloud version of chrome. It gave me the idea a Chromebook would be perfect if it works. So local shop had a sale & Chromebook was at the price point. Took a punt, found CanZE was available for install. Did a little happy dance! Then the real test out in the car. At first had some issues, all turned out to be my stupidity. Chromebook turns out to be an excellent partner with CanZE & Zoe. Actually way more stable connection then I got using my mobile. Seeing Melbourne has had 200 days of lockdown, most with curfew & 5km distance. I been keen to see how my 12 volt battery was copping. It’s been quite a cold winter. The motorcycle required a new battery. As you can see my main battery has great health! Eventually I’ll get to enjoy Zoe, she is about to have her first birthday with 3050 km on the odometer.

Source: https://www.facebook.com/groups/RZOC.CLUB/permalink/2550694458407407/

Warning: this is a geek post pertaining to the CanSee dongle, not CanZE, nor the ELM style dongles.

In the CanSee design we’ve specified the SN65HVD23x chip to translate the micro-controller’s logic levels to the CANbus. The beauty of this series of chips is that it runs on 3.3 volt, thus requiring no level shifting and only one supply rail. As reported earlier we’ve seen many bad chips though. Lately I have been involved in a commercial project and we selected the same chip for the same reason. To make a very long (debugging) story short, faulty chips bit us again, and these were sourced through a reputable PCB manufacturer. I also received a few chips from a friend and again, one was bad. Either there is a huge manufacturing problem, or there is a massive batch of fake chips on the market, or these chips are extremely prone to damage.

This problem has been haunting us for well over a year now and after wasting many, many hours again sifting through chips, re-soldering, messing with the firmware, and countless other botches, the camel’s back has now definitely broken. I am changing the public design to set the DC-DC converter’s voltage to 5V, use that to supply the development board AND the alternative transceiver chip (an NXP TJA1050). I’ll also add two resistors to level-shift the signal from the transceiver to the ESP32.

We’ve made a significant change to the CanSee dongle firmware. Nothing is visible from the outside of course, but internally, the CANbus driver we used earlier has been replaced in it’s entirety with the native driver supplied by Espressif, the supplier of the ESP32 micro-controller used in a CanSee dongle. This solves a problem when using the most recent wafer versions of the ESP32 (v3) with the bus speed, and improves stability significantly.

This change is published in the development branch of CanSee and under test right now. Feel free to grab it and give it a spin. If we don’t encounter issues it will be released to production in a few weeks.

For those of you wanting to delve into the technical nitty gritty of things, here is the explanation. If you are into the ESP32, using it’s CANbus controller, and doing so using the Arduino framework, I would urge you to have a good look at that comment and it’s follow up. It took me way too long and way too much head scratching before I ran into that post and have my “ah-ha” moment.