In the Bleeding Edge source code on Github, we’ve implemented a battery charging prediction model. It is accessible through the Experimental section. Here’s what it does.

When you start charging the battery, CanZE fetches the State of Charge, battery temperature, chargepoint power and  the range estimate from the car. The first three are fed into a mathematical model of the battery. The model is then run for 100 minutes. Each 10 minutes the State of Charge is displayed, along with a range prediction. This will allow you to estimate how much time you have before the required range to get to your destination is reached.

The model is of course not perfect, and by it’s nature, errors accumulate. Feedback is appreciated. We intent to put it in the next release.

Edit: The screen shows always 10 lines. It’s silly to pretend accuracy is better than that. Depending on the possible charging power detected, the number of minutes between two lines varies between 10 and 50 minutes. We’ve ironed out a couple of nasty bugs, but it’s ready for the next release now.

Sometimes chargepoints are wrongly commissioned, i.e. set for 63 amps, but fused for 40, which works mighty fine for all EVs, until a 43 kW capable Zoe comes along and trips the breaker.

In another case a driver in Belgium owning a new R240 and who has a single phase 32 amps chargepoint installed, the car consistently reports 20 amps max. He called the installer who insisted all was A-OK. So, the driver blamed the car. Renault couldn’t tell him if 32 A single phase is supported on the R240. However, they were nice enough to lend him a Q210 to try (and the Q210 supports the 32 A single phase configuration). Whoops, again 20 amps only.

CanZE of course reports this all, but to exclude any issue in the car, I build a little “amp checker” which reports the maximum current per lead the chargepoint communicates to the car. It’s a tiny, tiny little bugger. If you’re into some electronics fiddling and not afraid to try, here’s the instructable.

SAE J1772 EV charger checker

In the post about the braking system, we referred to the dealer mechanic introduction document, which has a bunch of very informative images. Here are two more about the climate system which I think are worth sharing. Pretty smart. From myrenaultzoe.com.

Dutch forum member OlafH dissected the pedestrian horn a bit and posted this picture.

dab98f91a852a7d004bc4a3cf90e042e

The horn is a bit hard to get to, one has to remove the front bumper to get to it. I tried to analyse it a bit. Here is a summary of the most important components. Prepare to be amazed.

SPC5602: A generic processor, though aimed at the car industry, made by NXP. It’s current id is MPC5602P. It has 64KB data flash, 20KB RAM, 256KB code flash, and a PMW generator. MPC5602P

TPA3111Q1: A 10 Watt D-class (PWM) mono audio amplifier by Texas instruments. No real surprises on this one. TPA3111D1-Q1

UJA1076A: CAN transceiver, a nifty little chip, made by NXP. It can also acts as a power supply and watchdog. UJA1076A

25P16vpa:  16Mbit (2MB) flash memory, made by ST Microelectronics. I bet the sound files are stored here.  Enough for 2 minutes mp3 encoded data or 12 seconds of raw sound files. 25P16vpa

1334A: Stereo DAC. Hell, this horn is CD quality, they didn’t even use the PMW output of the main processor!!!! Also NXP. 1334A

7342: Dual hexfet. Basically an on-off switch, by International Rectifier, now Infineon: 7342

The horn resells for about 180 Euros. It is hooked up to the Electro CANbus, power, and a few more wires. While I haven’t touched it myself yet, I bet the sound selector push-button is wired directly to it.

By the way. Another name for a Pedestrian Horn is Vehicle Sound for Pedestrians or VSP, though this is officially a Nissan name and developed system.

Edit: Matthew posted a link to an in depth description of ZOE’s VSP in the comments. I’ve copied the file here on the CanZE blog should the link go dead. Thank you Mathew.

Edit: Thanks you Rudi42 for the additional picture of the location, and of course the custom project.

Renault has been selling the official Zoe granny charger for a while. The official name is AFAIK the “Flexi charger”. It retails for a bit over 700 euro’s. Charging current is fixed to 10 amps. Slovenian forum member “pirpy” dissected it (partly) and noticed there is a control wire to the Schuko plug to change the maximum power setting to 13 amps. It is done by using a “special socket”, that is coded to supply that current using….. a strong magnet!!

See this forum entry and a few posts down. “pirpy” decided to use this knowledge to recode the flexi charger to 13A permanently.

renault-flexi-granny-magnet

In all fairness user “Crf” in the UK SpeakEV forum pointed me to this and I fully admit I thought he was pulling off a pretty decent April 1st joke, but it is really true!

Edit: as expected the Flexi charger has two relays so it can switch polarity. That was impossible to do in my granny charger, simply because there was no room for it.

Since Renault started giving out some Europe maps for free (and those not fitting on the standard non-Europe TomTom SD card), a couple of people have stepped up the work to try and clone & resize these cards. SpeakEV User Sandy posted this tedious but awesome procedure to get it done. It’s unverified, but it seems we’re getting there. See the 7th post in this thread.

Edit: I created a more detailed step by step instruction here. All credits to Sandy though!

There is always a risk of listing the bad things, which could easily lead to the false impression things are “wrong”. On the other hand, it is nice to have some sort of repository of issues and their solutions. One of them is this one.

Both a neighbour of mine as well as a driver in the UK had the problem that the car refused to charge. Her “nose” gave a double blue flash. From what I have understood there are two possible issues:

  • the car is accidentally in timer mode. Check your R-Link for the timer settings (though there should be a clock symbol in the display), and your app;
  • the TCU is defective.

In both cases mentioned, replacing the TCU by the dealer solved the issue. It is kind of interesting as it suggests that Renault implemented the battery’s “DRM” through a mechanism that it will still work, but not charge anymore. It sounds as a rather safe approach as you’d stop somewhere on a safe spot to charge anyway. What is not very very OK is that the car does not indicate in any way that the car disable charging because of a signal from Renault, or lack thereof. Now you’re basically clueless. The whole thing also suggests (yes, speculation mode!) that the battery needs to be unlocked on a regular basis and if it’s unable to contact big brother, the battery will refuse to be charged. On the other hand, I had a communication failure for weeks without additional problems. My TCU was not defective/replaced though. It’s an interesting subject and there is no clear cut answer yet.

Seems like I was wrong on the “DRM” as user Harm suggested in the comments.